Accession: | |
---|---|
Functional site class: | Cyclin N-terminal Domain Docking Motifs |
Functional site description: | Cyclin-dependent kinases (Cdks) coordinate hundreds of molecular events during the cell cycle via Ser/Thr phosphorylation. With cell cycle progression, different cyclins bind to Cdks to control their function by providing docking sites for substrates and also by modulating Cdk active site specificity. Docking motifs control the timing of cell cycle events by enabling preferential interaction and phosphorylation of substrates by a specific cyclin/Cdk complex. Cyclins use the conserved hydrophobic pocket (hp) to bind docking motifs on partner proteins. In the budding yeast, the divergence of the hp has given rise to a family of related RxL-like docking motifs consisting of a hydrophobic core modulated by positively charged (RxLF, RxLxF) or hydrophobic (LxF, PxF, NLxxxL) residues. Cyclins may use additional surfaces to dock substrates, as with the mammalian Cyclin D-specific (DOC_CYCLIN_D_Helix_1) and the budding yeast Cln2-specific leucine- and proline-rich LP (DOC_CYCLIN_yCln2_LP_2) motifs. |
ELMs with same func. site: | DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_CYCLIN_yClb5_NLxxxL_5 DOC_CYCLIN_yCln2_LP_2 |
ELM Description: | Human Cyclin A2 binds RxL motifs present in substrates and regulators (Russo,1996). The Skp2 F-box protein recruits the CDK2 inhibitor p27 to the SCF complex through its leucine-rich repeat domain, promoting p27 ubiquitination and subsequent degradation (Horn-Ghetko,2021). This event increases CDK2-Cyclin A/E mediated substrate phosphorylation and drives cells through the G1-to-S phase transition of the cell cycle. Skp2 also selectively engages CDK2-Cyclin A and not CDK2-Cyclin E through an extended interface involving its disordered N-terminal domain (1-94) (Salamina,2021). Skp2 harbours a non-canonical RxL-like motif that binds in reverse orientation (Kelso,2021) while preserving the canonical binding mode with one basic and two hydrophobic residues buried in the cyclin hydrophobic pocket (hp) formed by helices α1, α3 and α4 of Cyclin A. The Skp2 revRxL motif is part of a larger binding interface involving contacts of the Skp217-43 region with the α2-α3 loop and the α5 helix of Cyclin A. The regular expression is derived from the canonical RxL motif pattern, Skp2 alignments and the structure and mutagenesis data of the Skp2-Cyclin A complex. Residues 79FVIVRR84 bind in a reverse orientation, with R83, I81 and F79 occupying the positions of R90, L92 and L94 in the 88VKRRLDL94 E2F1 motif. Negative and positive charges are conserved N- and C-terminal to the Skp2 revRxL motif, matching the charge preference on each side of the Cyclin A binding cleft. The motif is broadly conserved in mammals, birds, reptiles, and many insects, with the central Ile relaxed to [LIV] in bony fish. The Skp2-Cyclin A structure explains the effects of Skp2 and p27 on CDK2-Cyclin A kinase activity. Skp2 competitively blocks the Cyclin A RxL cleft but does not make direct interactions with the CDK2 kinase domain as seen in p27 (Russo,1996). Hence, binding of Skp2 to Cyclin A disrupts the phosphorylation of RxL-containing substrates such as Rb and Bora without completely inhibiting CDK2 kinase activity. |
Pattern: | [EDST].{0,3}[FL].[ILV][^D][RK][^PD][^EDWNG]((.{0,3}[KRH])|.) |
Pattern Probability: | 0.0019576 |
Present in taxon: | Metazoa |
Interaction Domain: |
Cyclin, N-terminal (IPR006671)
Cyclins contain two domains of similar all-alpha fold, of which this entry is associated with the N-terminal domain
(Stochiometry: 1 : 1)
|
Abstract |
Cyclin-dependent kinases (Cdks) are central regulatory enzymes of the eukaryotic cell cycle. The sequential attachment of different cyclins to Cdks represents the periodic driving force that ensures a controlled progression through the cell cycle. Although there can be functional overlap, the various cyclin/Cdk complexes are specialized for optimum performance of discrete tasks. The cell cycle of the budding yeast Saccharomyces cerevisiae is remarkably simplified compared to that of mammalian cells and therefore it was the subject of many cell-cycle related studies and is currently better understood. Here a single Cdk, Cdk1, associates with different cyclins to mediate all major cell cycle transitions. Cyclins Cln1–3 are triggers for G1 and G1/S, while among B-type cyclins Clb5 and Clb6 drive S phase, Clb3 and Clb4 are specific for early mitotic events, and Clb1 and Clb2 complete the progression to mitosis. Detailed analyses of the budding yeast cell cycle provide important clues on the mechanisms that allow the fine-tuning of thresholds and the ordering of the switch points that drive cell cycle events. These mechanisms rely strongly on the linear encoding of SLiMs to direct cell cycle phosphorylation events (Ord,2019). Limited evidence suggests that these mechanisms have parallels in mammalian cyclin-Cdk regulation. Cyclins from yeasts and animals harbour a highly conserved surface patch called the hydrophobic pocket (hp) that recognizes docking motifs on partner proteins (DOC_CYCLIN_RxL_1; Loog,2005). The RxL docking motif mediates binding to the hp of a broad range of cyclins from budding yeast (Clb1-6) and mammalian cells (cyclins D/E/A/B). Studies in budding yeast have identified more specific motifs that target the hp. For example, G2 cyclin Clb3 recognizes substrates with the PxF motif (DOC_CYCLIN_yClb3_PxF_3; Ord,2020), and when Cdk is coupled to mitotic cyclins Clb1 or Clb2, the resulting M-Cdk complex recognizes the LxF motif (DOC_CYCLIN_yClb1_LxF_4; Ord,2019). Likewise, the NLxxxL motif is homologous to RxL, but has evolved exclusive specificity for S-phase cyclins Clb 5/6 (DOC_CYCLIN_yClb5_NLxxxL_5; Faustova,2021). Other cyclin-specific motifs include the leucine- and proline-rich LP docking motif (DOC_CYCLIN_yCln2_LP_2; Koivomagi,2011; Bhaduri,2011), which directs binding to late G1-cyclins Cln1/2. Specific docking motifs are also present in mammalian cyclins, as with the cyclin D-specific helical docking motif (DOC_CYCLIN_D_helix_1; Topacio,2019) that mediates binding of Rb proteins to Cyclin D to drive the G1/S transition. Cyclin docking motifs are not only employed by substrates, they are also frequently employed by regulators of cyclin/Cdk complexes, for example the mammalian p27Kip1 and p21Cip1 cyclin inhibitors (1JSU; 6P8E, 6P8H) which hide the site from substrates or the yeast Swe1 that keeps M-CDK in an inactive state during earlier phases of the cell cycle (Ord,2019). The differences in specificity of hp-docking motifs are explained by changes in the residues that make up the 210-MRAILVDW-217 helix in the hydrophobic pocket (numbering according to human cyclin A2) (Ord,2019). The structures of several RxL motifs (p53, pRb, E2F, and p107) bound to cyclin A2 (1H24; 1H25; 1H26; 1H28) reveal that the central R/K residue of the RxL motif hydrogen bonds to E220 in cyclin A2, while two hydrophobic/aromatic positions bind to an apolar groove made up by M210, I213, L214 and W217 (Russo,1996; Lowe,2002). Residues surrounding the hp (E224 and R250) shape its charge specificity and determine a preference for basic or hydrophobic residues in the vicinity of the core motif. In the budding yeast, loss of the acidic E220 residue in G2- and M-phase cyclins weakens their preference for RxL sequences, favouring the emergence of related (PxF and LxF) motifs that preserve the hydrophobic mode of interaction (Bhaduri,2011; Ord,2019; Ord,2020). Similar changes in the hydrophobic pocket of mammalian cyclins make M-cyclin (Cyclin B) a poor binder of RxL motifs. Early cyclin/Cdk complexes have low intrinsic activity toward the optimal substrate motif compared to the potent mitotic Cdks, still they need to initiate such important events as Start and S phase. The cyclin-specific docking sites described above are able to compensate for the gradually decreasing specificity of early cyclin/Cdk complexes (Loog,2005; Koivomagi,2011; Bhaduri,2011; Bhaduri,2015; Ord,2019; Ord,2019). Also, cyclins are not just activators of Cdk1 but are also modulators of the catalytic specificity of the kinase active site (Koivomagi,2011). Therefore, modulation of Cdk1 active-site substrate specificity combined with cyclin-specific docking enables regulated changes in Cdk1 specificity and provides a wide range of selective switch points that drive cell cycle transitions (Koivomagi,2011). Mammalian cyclins might use similar mechanisms to ensure specific substrate docking at different stages of the cell cycle, but hp-docking motifs different from the canonical RxL sequence remain to be elucidated with one exception, the reverse RxL motif in Skp2 (DOC_CYCLIN_RevRxL_6; Kelso,2021). |
8 GO-Terms:
1 Instance for DOC_CYCLIN_RevRxL_6
(click table headers for sorting; Notes column: =Number of Switches, =Number of Interactions)
(click table headers for sorting; Notes column: =Number of Switches, =Number of Interactions)
Acc., Gene-, Name | Start | End | Subsequence | Logic | #Ev. | Organism | Notes |
---|---|---|---|---|---|---|---|
Q13309 SKP2 SKP2_HUMAN |
78 | 89 | GSDKDFVIVRRPKLNRENFP | TP | 12 | Homo sapiens (Human) |
Please cite:
ELM-the Eukaryotic Linear Motif resource-2024 update.
(PMID:37962385)
ELM data can be downloaded & distributed for non-commercial use according to the ELM Software License Agreement
ELM data can be downloaded & distributed for non-commercial use according to the ELM Software License Agreement