The Eukaryote Linear Motif resource for Functional Sites in Proteins
Accession:
Functional site class:
Sumoylation site
Functional site description:
Sumoylation is a common PTM of nuclear proteins that affects their functional status. SUMO belongs to the Ubiquitin multiprotein family and the modification is achieved by a typical E1, E2 and E3-based system. Many transcription factors, chromatin proteins and proteins involved in other nuclear functions as well as the nuclear pores are sumoylated. Sumoylation is known to cause dramatic rearrangements of the subnuclear location of modified proteins. Sumoylation has sometimes been reported for cytoplasmic proteins too.
ELMs with same func. site: LIG_KEPE_1  LIG_KEPE_2  LIG_KEPE_3  MOD_SUMO 
ELM Description:
Motif recognised for modification by SUMO-1
Pattern: [VILMAFP](K).E
Pattern Probability: 0.0019140
Present in taxon: Eukaryota
Interaction Domain:
UQ_con (PF00179) Ubiquitin-conjugating enzyme (Stochiometry: 1 : 1)
PDB Structure: 1KPS
<a href="http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1KPS" title="" target="_blank"><img src="/media/pdb.ico.png"/>1KPS</a>
o See 45 Instances for MOD_SUMO
o Abstract
The SUMO proteins are Small Ubiquitin-related MOdifiers that are covalently conjugated onto lysine residues within target sequences (Tang,2008, Anckar,2007, Geiss-Friedlander,2007). Invertebrates have a single SUMO gene, whereas the SUMO family in vertebrates has three members; SUMO-1, SUMO-2, and SUMO-3. The SUMO proteins are synthesised as inactive precursors, which are processed by SUMO-specific carboxy-terminal hydrolases, resulting in novel double-glycine C-termini. The mature SUMO proteins are then activated by the Aos1/Uba2 activating enzyme (E1) and transferred to the Ubc9 conjugating enzyme (E2). Eventually, the SUMO protein is covalently linked to the target protein by the formation of an isopeptide bond between the carboxyl terminus of SUMO and an epsilon-amino group of a lysine residue of the target protein. The reaction is aided by an E3 ligase, e.g. mammalian PIAS1. This process, termed sumoylation, is reversible.
Most sumoylated proteins are nuclear, and three main functional roles of SUMO have been proposed. (i) Protein targeting: sumoylation has been shown to be important for nuclear import of the RanGAP1 protein, and for recruiting proteins to subnuclear protein complexes (e.g. promyelocytic leukemia protein (PML) to PML nuclear bodies). (ii) Enhancement of protein stability by potential competition with (and inhibition of) ubiquitination. (iii) Transcriptional control (e.g. negative regulation of transcription from the androgen receptor).
A core motif (PhiKxE) has been identified as the sumoylation target for SUMO-1 (Endter,2001, Poukka,2000, Sternsdorf,1999). SUMO-2/3 themselves contain a PhiKxE site, in contrast to SUMO-1, and can thus form polymeric chains (shown in vitro, and in vivo for SUMO-2) (Tatham,2001). A number of reports in the literature also suggest non-canonical sumoylation sites. While many of these may be incorrect, some seem to be widely accepted. High resolution structural data would be the best way to verify genuine examples. The SUMO site in C/EBP transcription factors shows an extended sequence conservation. A bioinformatics survey of nuclear proteins revealed a common extended SUMO site, termed the KEPE motif (Diella,2008) in transcriptional and chromatin proteins (LIG_KEPE_1, LIG_KEPE_2 and LIG_KEPE_3). The function of the KEPE motif remains to be determined.
o 9 selected references:

o 6 GO-Terms:

o 45 Instances for MOD_SUMO
(click table headers for sorting; Notes column: =Number of Switches, =Number of Interactions)
Protein NameGene NameStartEndSubsequenceLogic#Ev.OrganismNotes
NCOA2_HUMAN NCOA2 238 241 FAVSQPKSIKEEGEDLQSCL TP 1 Homo sapiens (Human)
NCOA2_HUMAN NCOA2 730 733 TAPGSEVTIKQEPVSPKKKE TP 1 Homo sapiens (Human)
AP2C_HUMAN TFAP2C 9 12 MLWKITDNVKYEEDCEDRHD TP 1 Homo sapiens (Human)
ARNT_HUMAN ARNT 244 247 ILDLKTGTVKKEGQQSSMRM TP 1 Homo sapiens (Human)
CDC11_YEAST CDC11 411 414 KELREIEARLEKEAKIKQEE TP 1 Saccharomyces cerevisiae (Baker"s yeast)
CEBPB_HUMAN CEBPB 173 176 PPPPPPAELKAEPGFEPADC TP 1 Homo sapiens (Human)
GCR_HUMAN NR3C1 276 279 PSNVTLPQVKTEKEDFIELC TP 1 Homo sapiens (Human)
GCR_HUMAN NR3C1 292 295 IELCTPGVIKQEKLGTVYCQ TP 1 Homo sapiens (Human)
HDAC1_HUMAN HDAC1 443 446 SNFKKAKRVKTEDEKEKDPE TP 1 Homo sapiens (Human)
HDAC1_HUMAN HDAC1 475 478 EKTKEEKPEAKGVKEEVKLA TP 1 Homo sapiens (Human)
HSF1_HUMAN HSF1 297 300 LSSSPLVRVKEEPPSPPQSP TP 1 Homo sapiens (Human)
LEF1_MOUSE Lef1 24 27 CATDEMIPFKDEGDPQKEKI TP 1 Mus musculus (House mouse)
LEF1_MOUSE Lef1 266 269 HPAIVTPQVKQEHPHTDSDL TP 1 Mus musculus (House mouse)
MYB_HUMAN MYB 502 505 LVEDLQDVIKQESDESGIVA TP 1 Homo sapiens (Human)
MYB_HUMAN MYB 526 529 NGPPLLKKIKQEVESPTDKS TP 1 Homo sapiens (Human)
NCOA2_HUMAN NCOA2 784 787 ASNTKLIAMKTEKEEMSFEP FP 1 Homo sapiens (Human)
PCNA_YEAST POL30 126 129 LMDIDADFLKIEELQYDSTL TP 1 Saccharomyces cerevisiae (Baker"s yeast)
SHS1_YEAST SHS1 425 428 PVRQLGREIKQENENLIRSI TP 1 Saccharomyces cerevisiae (Baker"s yeast)
SATB2_HUMAN SATB2 232 235 RWYKKYKKIKVERVERENLS TP 2 Homo sapiens (Human)
HDAC4_HUMAN HDAC4 558 561 AHAQAGVQVKQEPIESDEEE TP 1 Homo sapiens (Human)
SHS1_YEAST SHS1 436 439 ENENLIRSIKTESSPKFLNS TP 1 Saccharomyces cerevisiae (Baker"s yeast)
SUMO3_HUMAN SUMO3 10 13 SEEKPKEGVKTENDHINLKV TP 1 Homo sapiens (Human)
SP100_HUMAN SP100 296 299 SCSVRLVDIKKEKPFSNSKV TP 1 Homo sapiens (Human)
SP3_HUMAN SP3 550 553 ADSPADIRIKEEEPDPEEWQ TP 1 Homo sapiens (Human)
TDG_HUMAN TDG 329 332 QEDAKKMAVKEEKYDPGYEA TP 1 Homo sapiens (Human)
VIE1_HCMVA UL123 449 452 EEREDTVSVKSEPVSEIEEV TP 1 Human herpesvirus 5 strain AD169
SATB2_HUMAN SATB2 349 352 NHPPIPRAVKPEPTNSSVEV TP 2 Homo sapiens (Human)
P53_HUMAN TP53 385 388 GQSTSRHKKLMFKTEGPDSD TP 1 Homo sapiens (Human)
CEBPA_HUMAN CEBPA 160 163 APALRPLVIKQEPREEDEAK TP 1 Homo sapiens (Human)
CEBPD_HUMAN CEBPD 119 122 PGPAAPRLLKREPDWGDGDA TP 1 Homo sapiens (Human)
CEBPE_HUMAN CEBPE 120 123 SYDPRAVAVKEEPRGPEGSR TP 1 Homo sapiens (Human)
PML_HUMAN PML 159 162 CFEAHQWFLKHEARPLAELR TP 1 Homo sapiens (Human)
2 
PRGR_HUMAN PGR 387 390 DFQPPALKIKEEEEGAEASA TP 1 Homo sapiens (Human)
CDC3_YEAST CDC3 3 6 MSLKEEQVSIKQDPEQEERQ TP 2 Saccharomyces cerevisiae (Baker"s yeast)
SUMO2_HUMAN SUMO2 10 13 ADEKPKEGVKTENNDHINLK TP 1 Homo sapiens (Human)
RAGP1_MOUSE Rangap1 525 528 RLLIHMGLLKSEDKIKAIPS TP 1 Mus musculus (House mouse)
HIC1_HUMAN HIC1 332 335 GPSLLYRWMKHEPGLGSYGD TP 3 Homo sapiens (Human)
SALL1_HUMAN SALL1 1085 1088 PANSLSSLIKTEVNGFVHVS TP 1 Homo sapiens (Human)
MEF2A_HUMAN MEF2A 402 405 INTNQNISIKSEPISPPRDR TP 3 Homo sapiens (Human)
PPARG_HUMAN PPARG 106 109 KLQEYQSAIKVEPASPPYYS TP 3 Homo sapiens (Human)
PPARG_MOUSE Pparg 106 109 KLQEYQSAIKVEPASPPYYS TP 4 Mus musculus (House mouse)
HIF1A_HUMAN HIF1A 476 479 PALNQEVALKLEPNPESLEL TP 7 Homo sapiens (Human)
HIF1A_HUMAN HIF1A 390 393 DTSSLFDKLKKEPDALTLLA TP 7 Homo sapiens (Human)
PML_HUMAN PML 489 492 QTQCPRKVIKMESEEGKEAR TP 9 Homo sapiens (Human)
1 
HIF1A_HUMAN HIF1A 531 534 VDSDMVNEFKLELVEKLFAE TN 4 Homo sapiens (Human)
Please cite: The Eukaryotic Linear Motif Resource ELM: 10 Years and Counting (PMID:24214962)

ELM data can be downloaded & distributed for non-commercial use according to the ELM Software License Agreement
feedback@elm.eu.org